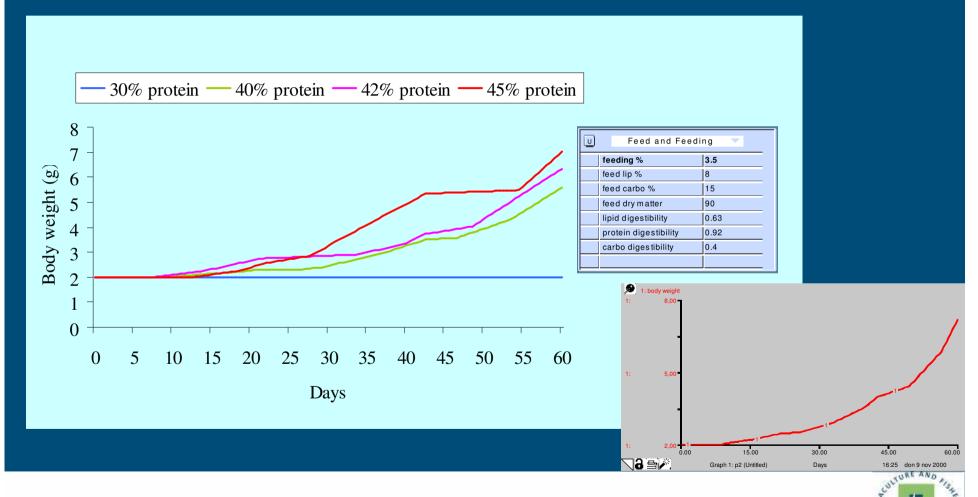
Alternative views on shrimp pond nutrition

Verdegem MCJ, Schrama J., Hari B., Kurup M.

Dietary requirements shrimp

Requirement of	Percentage	Reference
dietary component	of diet	
	45–50%	Lee (1971)
	40–44%	Alava and Lim (1983)
	40–50%	Bautista (1986)
Dietary protein	40–44%	Shiau et al. (1991)
	35–45%	Bages and Solane (1981)
	36–40%	Shiau and Chou (1991)
	40–50%	Chen (1993a)
Dietary lipid	6%	Wu (1986)
	4–11%	Sheen et al. (1994a)
HUFA	0.5–1%	Chen and Tsai (1986)
Linolenic acid and DHA	1.44%	Merican and Shim (1997)
Chalastaral	0.50%	Chen (1993b)
Cholesterol	0.2-0.8%	Sheen et al. (1994b)
Dietam earbehydrate	20%	Alava and Pascual (1987)
Dietary carbohydrate	20–30%	Shiau and Peng (1992)

35-45% dietary protein

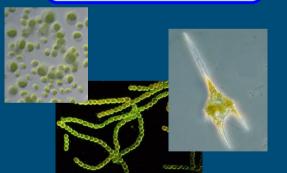

20-30% dietary carbohydrate

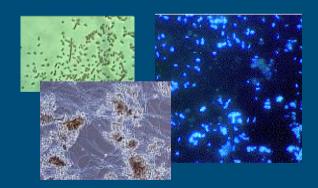
Model use

Protein level in the diet

Bacterial flocks

- Active suspension ponds technology
- Bacterial flocks
- Source of:
 - Protein
 - PUFA's
 - Minerals and vitamins




Bacterial flocks in extensive ponds?

- Density ± 100 times higher on surfaces
 - Bottom
 - Submerged surfaces
- Algal density and bacterial density in water column are linked – high primary productivity

Algae

bacteria

ASP technology might work partially

Increase C:N ratio of feed inputs

reduce protein content in diet add CH-source

High C:N ratio in feed

Experimental set-up

- 3 experiments
 - Indoor tank experiment (production, growth)
 - Outdoor tank experiment (water quality, N-budget)
 - Pond experiment (production, water quality)

Indoor tank

Outdoor tank

Outdoor pond

Experiments

- Stocking density: 6 shrimp m⁻²
- Fertilized tanks with
 - 4 g urea
 - 1 g super phosphate, per m² per week
- 2 diets
 - 40 % protein, C:N ratio 8.1
 - 25 % protein, C:N ratio 12.9

Indoor experiment, continued

- Assumptions
 - Tapioca = 50% Carbon
 - 50% N in feed → released as ammonia
 - 20 g tapioca per g TAN released

25% prot. diet: 0.39 kg tapioca/kg feed

40% prot. diet: 0.62 kg tapioca/kg feed

4 treatments:

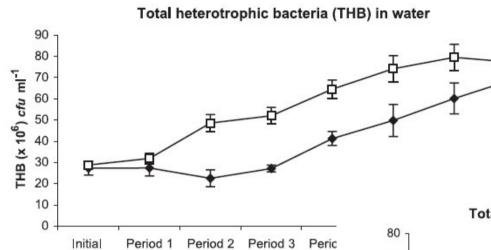
- P25
- P25 + CH
- P40
- P40 + CH

Pond experiment

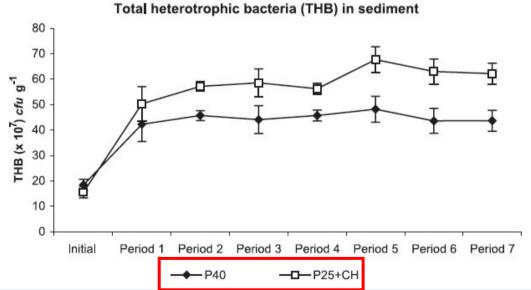
- 2 treatments
 - P25 + CH
 - P40
- 200 m² ponds
- Previously used for rice cultivation
- Pond bottoms cleaned, limed, disinfected
- Biweekly fertilization with urea and TS
- 4 replicates
- Focus on
 - Production
 - Economics

Water quality

Indoor tanks CH addition water column → less TAN; more Th


Water column	P25	P25+CH	P40	P40+CH
TAN (μg I ⁻¹)	4.7 ^b	3.1b	9.0 ^a	3.7b
Total N (μg I ⁻¹)	169 ^b	103°	341 ^a	200 ^b
THB (x10 ⁴ <i>cfu</i> ml ⁻¹)	17.3 ^{ab}	23.9a	12.1 ^b	26.9a
Sediment				
TAN (μg g ⁻¹)	36.2ª	32.9ab	36.2ª	31.1b
Total KN (μg g ⁻¹)	189 ^{ab}	177 ^b	218 ^a	202 ^{ab}
THB (x10 ⁶ <i>cfu</i> ml ⁻¹)	33.8 ^{ab}	41.3ab	24.8 ^b	62.1a

Same in sediment



Total heterotrophic bacteria

PONDS

Increases during culture in water column

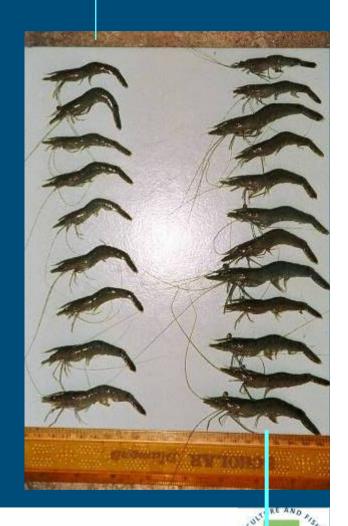


Plate counts

Difference in THB-count

Strong correlation to production

N-budget (%)

Inputs

	Nitrogen inputs (g N tank ⁻¹)								
Treatment	Water	Sediment	Fertilizers	Feed	Shrimp	Total			
P25	0.31	33.20	36.70	29.80	0.01	100			
P25+CH	0.30	32.50	36.90	30.30	0.01	100			
P40	0.26	27.50	31.40	40.80	0.01	100			

Outputs

		Nitrogen outputs (g N tank ⁻¹)						
Treatment	Water	Sedi	iment	Exchange	ehr	imn	Total	Unaccounted
	vvalei Set	Sedi	Sument	loss	shrimp		output	
P25	0.48		71.3	2.3		16.1	90.1	9.9
P25+CH	0.44		69.9	2.3		21.1	93.8	6.2
P40	0.49		67.7	2.7		16.7	87.6	12.4

Production parameters

Indoor tanks	P25	P25+CH	P40	P40+CH
Net shrimp yield (g m ⁻²)	6.4 ^c	13.5 ^b	13.7 ^b	17ª
FCR	6.4 ^a	3.0 ^b	3.0 ^b	2.4 ^b
N retention in shrimp (%)	16.3 ^c	28.9 ^a	17.1°	22.4 ^b
Protein efficiency ratio	0.6 ^c	1.3 ^a	0.9 ^c	1.1 ^b
Ponds				
Net shrimp yield (g m ⁻²)		25.7a	21.1 ^b	
FCR		1.6 ^b	2.2 ^a	
N retention in shrimp (%)		45.3 ^a	19.8 ^b	
Protein efficiency ratio		2.5ª	1.2 ^b	

Same trend indoor and ponds

Similar results as for ASP

Economic analysis ponds

	P25+CH	P40
Total production cost (Rs.)	83,202	103,420
Gross return (Rs.)	193,275ª	125,406 ^b
Net profit (Rs.)	110,073 ^a	21,986 ^b
Benefit/cost ratio	1.3ª	0.2 ^b

US\$ 1 = 44.65 Rupees (Rs.) (2003)

Discussion

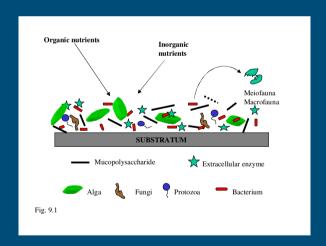
- CH-addition → increased shrimp yield
 - Higher THB-count in sediment
 - Substrate biofilms took role of bacterial flocks?
- CH-addition → increase N-retention
 - Dietary protein requirements of shrimp are 35-50%
 - N-retention increase from 16 to 21%
 - Higher N-retentions have been recorded, but then feed contributed 76-92% of total N input (30-40% in this study)

Conclusion

CN-addition in combination with low-protein diet worked in extensive ponds

- Improved benefit/cost ratio from 0.2 (P40) to 1.3 (P25+CH)
- Well controlled experimental conditions
 - Pond bottom preparation (clean, rice root systems → aerates bottom)
 - Careful distribution of tapioca-water over water surface
 - Biofilms on sediments took over role of bacterial flocks?

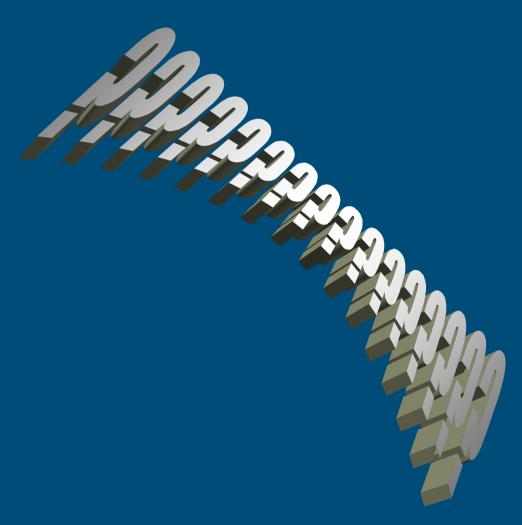
More research is needed



Suggestions for further research

Bring substrate for biofilm development into water column

Combine C/N technology with periphyton technology



Thank you for your attention

